ENVIRONMENTAL IMPACT ASSESSMENT STUDIES
FOR
THE PROPOSED ONSHORE DEVELOPMENT AND PRODUCTION OF
OIL & GAS IN 23 BLOCKS IN SIVASAGAR DISTRICT, ASSAM

EXECUTIVE SUMMARY

Sponsor :
M/s. Oil and Natural Gas Corporation Ltd.
Assam Asset
Sivasagar – 785 640

Prepared by :
Vimta
142 IDA, Phase-II, Cherlapally, Hyderabad–500 051
env@vimta.com, www.vimta.com

(NABET - QCI Accredited, NABL Accredited & ISO 17025 Certified Laboratory,
Recognized by MoEF&CC, New Delhi)

March, 2018
1.0 EXECUTIVE SUMMARY

Oil and Natural Gas Corporation Limited (ONGC) proposes to carry out onshore development and production of oil & gas in 200 wells in non-forest area in Assam Asset (Nazira) covers whole of the North Assam Shelf (NAS), which consists of major producing oil fields and its Tiphu satellite fields such as Rudrasagar, Charali, Changmaigaon, Geleki, Lakwa and Laipilingaon in Sivasagar district, Assam.

As per the Environment Impact Assessment (EIA) Notification dated 14th September 2006, the proposed project falls under 'Category A' of Activity Type 1(b).

1.1 Location Details of the Project

ONGC proposes onshore development and production of oil & gas in 23 blocks in Sivasagar District, Assam. The mining lease (ML) areas in oil fields and its Tiphu satellite fields in given Table-1.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Name of Field</th>
<th>Block Name</th>
<th>Area (Sq. Km)</th>
<th>Wells Proposed for Drilling</th>
<th>Average Depth (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rudrasagar</td>
<td>Rudrasagar</td>
<td>70.5</td>
<td>200</td>
<td>2800-4000</td>
</tr>
<tr>
<td>2</td>
<td>North Rudrasagar</td>
<td></td>
<td>149.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub Total (A)</td>
<td></td>
<td>219.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Charali</td>
<td>Charali</td>
<td>51.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Charali Extension</td>
<td></td>
<td>45.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>West Charali</td>
<td></td>
<td>12.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub Total (B)</td>
<td></td>
<td>108.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Changmaigaon</td>
<td>Changmaigaon</td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>East Changmaigaon</td>
<td></td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>East Changmaigaon Extension</td>
<td></td>
<td>35.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub Total (C)</td>
<td></td>
<td>60.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Geleki</td>
<td>Geleki-ML</td>
<td>27.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Geleki-Extension-I-ML</td>
<td></td>
<td>5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Geleki-Extension-II-ML</td>
<td></td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Mekeypore-Santak-Nazira-ML</td>
<td></td>
<td>77.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Namti-ML</td>
<td></td>
<td>35.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>South East Geleki-ML</td>
<td></td>
<td>20.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>SE Geleki Extension</td>
<td></td>
<td>28.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Mekeypore-Santak-Nazira Extension</td>
<td></td>
<td>50.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub Total (E)</td>
<td></td>
<td>246.7</td>
<td>200</td>
<td>2800-4000</td>
</tr>
<tr>
<td>17</td>
<td>Lakwa</td>
<td>Banamali-ML</td>
<td>50.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Chaaradeo-Nahorhabi-ML</td>
<td></td>
<td>14.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Lakwa-ML</td>
<td></td>
<td>172.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Sonari-ML</td>
<td></td>
<td>30.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Chaaradeo-Nahorhabi Extension</td>
<td></td>
<td>41.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub Total (F)</td>
<td></td>
<td>307.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Laipplingaon</td>
<td>Laipplingaon-ML</td>
<td>26.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Laipplingaon Extension</td>
<td></td>
<td>30.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub Total (G)</td>
<td></td>
<td>56.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GRAND TOTAL (A+B+C+D+E+F+G)</td>
<td></td>
<td>998.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE-1.1
TOPOGRAPHIC MAP OF BLOCKS LOCATION IN SIVASAGAR DISTRICT
The details of environmental setting for 10 km radius of the project block area are given below.

- The project block is connected through National Highways NH-37, NH-61, SH-1, SH-22 and Sivasagar railway station within ML area;
- The major water bodies in the project block area are Dikhu river/ Nanga river, Disang river, Jhanji river, Brahmaputra river, Burhi Dihng river, Diroi nadi and Dimav nadi;
- The panidihingia wildlife sanctuary within the study area;
- There is a reserve forest within ML area Panidihingia RF, Diroi RF, Sola RF, Abaypwr RF, Sinphan RF, Geleki RF and Tiruill RF; and
- The block area falls under Seismic Zone–V as per IS: 1893 (Part-1) 2002.

1.2 Importance of the Proposed Project

India is not among the major producers of crude oil, as it does not have much oil reserves. Therefore, India depends on imports of crude oil from other countries. There is a heavy imbalance between oil production and consumption in India. The Indian government is encouraging exploration and production of oil and gas to a great extent. This would primarily allow India to tap its own resources there by reducing its import bill.

Discovery of viable hydrocarbon reserves in the state can boost the state’s economic development to a great extent. The proposed project is therefore immensely significant for the state and nation.

1.3 Details of Proposed Project

The onshore development and production of oil & gas in the delineated area selected through seismic survey to identify and establish hydrocarbon potential.

The site will be sized to contain all equipment and temporary camps, storage, workshops, etc. using distances between various rig components in line with existing rules and regulations for the area of operation and the approved standard operating procedures of the drilling contractor. Within the above constraints, the site shall be sized to minimize environmental impact. The approximate area of well site is dependent on the type of drilling equipment deployed, which in turn is dictated by the planned depth of drilling.

1.3.1 Infrastructure Requirement

Land Requirement: The minimum land required at each well site during development and production of oil & gas will be 125 m x 125 m, i.e., 1.5-2.0 ha. Land requirement for the base camp will be about 0.5 ha. The land will be acquired on a temporary basis and if commercial quantity of oil or gas is found, the land will be taken on long lease and if oil and gas is not found in commercial quantities, the land will be returned to the owner by bringing back to its original status and adequate compensation as per the guidelines of local administration will be provided.

Power Requirement: The total power requirement at the well site will be 3000 KVA. The power requirement in the each well site will be catered through Diesel
Generator (DG) sets. The power requirement will be met by 4 Nos of 750 KVA DG sets at well site. Stand by DG set arrangement of 750 KVA at well site will be made.

Water Requirement: Water is basically required for preparing drilling mud and for meeting domestic needs of the campsite. Typically, the water consumption for each well ranges from 25 m³/day for a period of 3-4 months. However, the drilling and domestic water requirement would depend on the time required to drill the well, which is primarily dependent on the proposed depth.

Manpower Requirement: The each well site construction would be done largely by employing local labour. At each well site construction, local employment will be generated for about 30 person/shift of 12 hrs in two shifts.

1.4 Baseline Environmental Status

Environmental monitoring has been carried within the entire onshore development and production of oil & gas in Sivasagar district, Assam. The baseline carried out from 1st October 2017 to 31st December 2017 representing post-monsoon and partly winter season for a year 2017

1.4.1 Land Use Studies

The land use pattern of the proposed project has been studied by District Census Hand Books and satellite images.

The land use pattern of the study area indicates built-up land of 4.8%, forest land of 18.5%, land under agriculture is about 56.7%, waste land is about 11.8% and water bodies contribute about 8.2% in the study area.

1.4.2 Soil Quality

The soil samples were tested at 20 locations during post-monsoon and partly winter season 2017 covering various land uses. It has been observed the pH of the soil ranged from 4.0 to 6.5 indicating the soil quality to be very strongly acidic to moderately acidic in nature. The Electrical conductivity ranged from 25 µS/cm to 331 µS/cm. The organic carbon content in the study area ranged from 0.94% to 2.27%, indicating that soil falls sufficient to more than sufficient category. Available phosphorus ranged from 4.42 kg/ to 721.5 kg/ha. Available potassium ranged from 44.1 kg/ to 359.1 kg/ha. Available Nitrogen ranged from 171.8 kg/ha to 398.0 kg/ha. The chlorides were found in the range of 49.5 mg/kg to 290.1 mg/kg.

1.4.3 Meteorology

On-site monitoring was undertaken for various meteorological variables in order to generate the site-specific data. When the meteorological data generated at the monitoring site was compared with the data recorded at nearest IMD station, it was observed that the data generated at the site is broadly in comparison with regional meteorology, except for minor variations.
1.4.4 Ambient Air Quality

To establish the baseline status of the ambient air quality in the study area, the air quality was monitored at 20 locations during post-monsoon and partly winter season 2017. Out of the 20 locations the minimum and maximum concentration for PM$_{10}$ ranges between 23.6 and 67.9 μg/m3 which are well within the NAAQ standards i.e 100 μg/m3.

The minimum and maximum concentration PM$_{2.5}$ varies between 10.1 to 42.3 μg/m3 respectively during the study period which are well within the NAAQ standards i.e 60 μg/m3. The concentrations of SO$_2$ ranges between 11.1 to 25.8 μg/m3 which are well within the NAAQ standards i.e 80 μg/m3. The concentrations of NOx were varied between 14.7 to 31.9 μg/m3 respectively which are well within the NAAQ standard i.e 80 μg/m3.

The concentration of O$_3$ ranges between 3.0 to 9.7 μg/m3. VOCs were observed to be in the range of and <0.1 ppm to 0.24 ppm. Methane hydrocarbon (CH$_4$HC) was observed to be in the range of <0.1 ppm to 0.16 ppm. Non-methane hydrocarbon (Non-CH$_4$ HC) was observed to be in the range of <0.1 ppm to 0.14 ppm. Ammonia was found to be less than 20 μg/m3.

Benzene was found to be less than 1.0 (μg/m3) and BaP is less than 0.01 (ηg /m3) at all locations. All heavy metals specified in the NAAQs 2009 i.e., Ni, Hg, Pb and As were found to be BDL. From the analysis of the monitored data, it infers that the air quality levels in the study area are of fairly good quality and comply with the National Ambient Air Quality Standards (NAAQ).

1.4.5 Water Quality

The baseline water quality status in the region is established by analyzing about 20 ground water samples and 10 surface water samples during study period.

The ground and surface water samples were analysed and found that ground water quality is well within the drinking water quality limits except iron ranges between <0.001 mg/l to 15.2 mg/l and surface water has been found to be suitable for drinking after the conventional treatment followed by disinfection.

1.4.6 Ambient Noise Levels

The noise monitoring has been conducted at 20 locations, covering residential, commercial and silence zones in the study area. A review of this data indicates that at all the locations, the noise level was found within the permissible limits of CPCB.

1.4.7 Ecological Environment

As per primary survey and secondary data referred, it can be concluded that the study area is ecologically rich and diverse. The terrain is undulating with the presence of hillocks are observed in the study area.

Study areas has presence of Elephas maximus and Panthera pardus in Geleky reserve forest area and from Abhaypur and in Panidehing area. Elephants are reported in the Panidehing area since their habitation in 1990’s. The study area
has presence of many migratory birds and endangered birds such as Himalayan Griffon vultures, White rumped vulture, Slender billed vultures, Palla’s Fishing eagle’s along with migratory birds like shoveller's. These migratory birds and endangered species are also found outside the protected area and near wetlands in the study area.

The following species of turtles are found in the study area such as Assam Roofed turtle, spotted pond turtle and Asian Leaf turtle are reported. Greater Adjutant stork which was also found in the study area which is an endangered bird. Gangetic dolphin is found in the Brahmaputra river in the study area Panidhining area at the confluence of Disang river. Ungulates such as Hogdeer are found throughout the year in Panidehing area in the study area.

1.4.8 Socio-Economic Environment

The configuration of male and female indicates that the males constitute to about 51.24% and females to 48.76% of the total population as per 2011 census records. In the study area, as per 2011 census, 3.72% of the population belongs to Scheduled Castes (SC) and 6.92% to Scheduled Tribes (ST).

The percentage of male literates to the total literates of the study area works out to be 54.69%. The percentage of female literates to the total literates, which is an important indicator for social change, is observed to be 45.31% in the study area as per 2011 census records.

1.5 Impact Assessment

The identification and assessment of impacts over the various environmental attributes in the region due to the proposed project activities in the proposed blocks are discussed and mitigative measures and environmental management plan for the potential impacts have also been presented.

Onshore development and production of oil & gas is a temporary activity which lasts for about 3-4 months at each well location.

1.5.1 Impact on Topography and Land Use

Onshore development and production oil & gas project is a short duration activity at each well location, typically encompassing a period of 3-4 months from land acquisition to site abandonment. The impact would therefore be localised, temporary and minimal. Because of the above activities, the topographical structure may change locally. However, considering the small footprint area required during the drilling, only marginal impact due to change in land use is anticipated.

1.5.2 Impact on Climate

Impact on the climatic conditions due to drilling will not be significant. The maximum temperatures of the exit gas from the DG stack and flare stack will be around 300°C and 400°C respectively. In terms of total emission of greenhouse gases and consequent impact on global warming or on potential for local increase
of ambient temperature, considering the quantum of exit gas and the total duration of flow, the impact on the local or global climate will be insignificant.

1.5.3 Impact on Air Quality

The potential sources of air emissions at the well sites will be as follows:

- Dust from earth works (during approach road and site preparation);
- Emissions from DG sets (including noise emission);
- Emissions from possible flaring during well testing; and
- Emissions from vehicles

During the short period of site preparation mechanical shovels and earthmovers will be used for vegetation clearance, cut and fill and other site leveling activities. These activities could generate dust particles which will be mobilized by wind, and deteriorate the ambient air conditions. However, these activities will be only temporary and the impact to ambient air quality would be within the close proximity of well site.

The gaseous emissions from the DG set will be controlled by efficient combustion of fuel in the DG set. The flaring of oil and gas during well testing is a short duration activity (about 14 - 21 days) and will be done within a ground level enclosed pit. Wherever, required special precautions will be taken to minimize the impact on the local environment and habitat.

1.5.4 Impact on Surface Water and Groundwater Quality

Approximately 15 m3/day of wastewater would be generated from each well site. Water based non-toxic biodegradable fluids with inhibitive and encapsulative characteristics are proposed to be used as drilling mud for minimizing any long term impact on groundwater quality. Additionally, the drilling mud collection and recirculation pond is lined with impervious layer to prevent seepage and loss of drilling fluid into the subsoil. Further, proper casing installation and cementing the well will ensure least groundwater contact. The clarified wastewater will be treated in packaged treatment plant located at the well sites to meet norms specified by CPCB and ASPCB. The sewage will be discharged into septic tanks and then to subsoil through soak pits.

1.5.5 Impact on Noise Levels

During the proposed project operation at the well sites, there would be various sources of noise in the area, viz., drilling draw works/rotors, mud pumps, power generators, Vehicular Movement and Cranes and material handling equipment.

The maximum predicted noise level at about 100 m from the boundary of the well site is about 52.0 dB (A). The ambient noise levels at most of the places in the region are within the CPCB standards. Since, the drilling operations last for only 3-4 months at each location, impact of the noise pollution due to the proposed development drilling of wells project will be insignificant on the community.
1.5.6 **Ecological Impacts**

Impact on the ecology of the study area will vary with the proximity of the habitats from the each well locations. However, the impacts are of temporary nature, which will last only for few months at each well location during the proposed project activities and will thus allow subsequent recovery after the activities stops.

1.5.7 **Demography and Socio-Economics**

Although the level of existing communications and support services in the area are considered adequate based on the population density, establishment of the proposed project would further strengthen the road network and access to some of the remote areas with all weather roads would be a distinct beneficial impact. The overall impact is considered to be positive.

Impact on health due to emissions and noise from proposed project activity has been assessed to be minimal. In addition employees working at the well site would be provided protective devices like ear plugs/ear muffs for ensuring minimum impact on human health.

The proposed project should be possible to avoid impact on existing arable land. By following the compensation procedures and by observing common courtesy, impacts on existing use and benefit rights holders can be minimized.

The proposed programme is expected to generate local employment in the order of about 30/shift 12 hrs. While this benefit is small by most standards, it is a significant employment opportunity in the block.

1.6 **Environment Management Plan**

The objective of the Environmental Management Plan (EMP) is to identify project specific actions that will be undertaken to mitigate and manage impacts associated with the proposed onshore development and production of oil & gas programme.

1.6.1 **Environmental measures during well construction**

i. As a preventive measure to avoid impacts the well site will be located based on the following consideration:

- Located at least 300-500 m away from the nearest village habitat / sensitive receptors;
- Located at least the height of the well must away from public road;
- Located at least 300-500 m away from existing water bodies;
- Ensure natural drainage channels are avoided or drainage channels rerouted to ensure unhindered flow of rain/flood water. Where necessary adequate erosion control measures will be provided; and
- Located in a manner to avoid plantations of timber yielding trees

ii. Construction activities will be coordinated in consultation with land owners and local authorities to reduce interference with agricultural activities
iii. In dry weather conditions, water sprinkling during excavation, levelling and transportation will be implemented.

iv. Topsoil will be stripped below plough depth from the well site and stored on the site. The depth of stripping will be on the basis of site specific soil survey. Topsoil will also be stripped from and stored adjacent to the site.

v. The well site ground level will be raised and hard standing provided. Drainage channels around the site area will be constructed to ensure no obstruction to flow pattern.

vi. The approach roads will be routed in a manner so that disturbance to existing activity and to the local community is minimized. Routing through village habitat areas will be avoided, as far as practical. The road surface will be maintained to minimize generation of vehicular movement dust in the local area.

vii. The well site would be provided with sufficient and suitable sanitary facilities and these will be connected to well designed and maintained septic tanks.

viii. Hazardous materials such as diesel, lubrication oil and paint materials required at the site during construction activities would be stored and disposed as per hazardous waste authorisation conditions.

ix. To ensure that the local inhabitants are not exposed to the hazards of construction the site would be secured by fencing and manned entry posts.

x. The chemical and diesel storage area will be paved and provided with spill containment walls. Pits for storage of water, drilling mud and drill cuttings will be provided with impervious liner. Sufficient free-board will be provided to prevent overflow.

xi. It would be ensured that diesel powered construction vehicles are properly maintained. Vehicle maintenance would be carried out authorised service centres. Service centres will be so selected to ensure that these conform to statutory regulations.

1.6.2 Removal of Equipment and Materials

In the event if economic quantities of hydrocarbons are found, the well will be suspended with a wellhead in place for producing oil and gas, but all other equipment and materials will be removed from the site.

All empty drums, wastes, used and unused drilling fluids, fuel and lubricants will be removed from the well site. Water supply and effluent discharge hoses and associated equipment will be removed. The access road(s) would be reinstated.

1.6.3 Decommissioning upon Abandonment
In the event that no economic quantities of hydrocarbons are found, a full abandonment plan will be implemented for the well sites in accordance with the applicable Indian petroleum regulations.

1.6.4 Atmospheric Emissions

The combustion of diesel for power generation for the proposed project operation results in atmospheric emissions of SO$_2$, NOx, CO, Particulates and Hydrocarbons. Flaring during production and testing is of 14-21 days duration and atmospheric emissions are marginal.

There will be no sensitive receptors to the emissions of combustion products in the vicinity of the proposed project operations apart from the crew of the drilling rig. The impacts caused are therefore, considered to be negligible. Measures to ensure minimal impacts include appropriate management of power generation source to achieve fuel efficiency and therefore reduce emissions and use of low sulphur diesel oil if available. Environmental monitoring is proposed during drilling and well testing to ensure maximum combustion efficiency. Flaring towards any standing vegetation will be avoided. In case if it is inevitable, a suitable barrier will be erected to prevent any vegetation scorching due to direct heat radiation; and prior to flaring, the critical equipment will be thoroughly tested.

1.6.5 Noise Environment

The modeling results show that the noise levels will attenuate to below permissible levels within the development and production well site boundary. The Generators will be properly enclosed and the exhausts will be provided with silencers.

1.6.6 Management of Drilling Wastes

The major waste product of a drilling operation is the generation of rock cuttings with residual mud adhering to the drill cuttings and spent drilling fluid. About 408-430 m3 drill cuttings per well need to be disposed off.

ONGC proposes to use internationally followed methodologies while drilling either with Water Based Muds (WBM). The volume of drilling fluids used will be optimizing at the design stage by selecting modern drilling engineering technology.

The mud will be reused after its separation from the cuttings. A mud mixing tank will be set up at the well site with a collection system so that any spill of chemicals will be collected.

The platform all around the tank on the pedestrial shall be of metal gratings to facilitate walkway as well as to permit the fluid to pass through so that it can be collected in the collection for further reuse / disposal.

The spilled oil may be reused in the mud preparation. At the extent possible reuse the residual drilling fluids in the drilling campaign only the drilling fluid which is not further used can be discarded.

1.6.7 Management of the Solid Wastes
Small amounts of solid wastes will be generated during normal operation at the drilling rig. The wastes will be disposed on compliance with local and national legislations. Spent waste oil to be stored in a secure paved area and disposed to MoEF&CC/ ASPCB approved waste oil recyclers. Drill cuttings and sludge from drilling mud to be buried within the impervious lined pit and covered with soil as part of the site abandonment plan. Biodegradable waste arising from kitchen and canteen activities to be scientifically composted and the bio-manure so generated to be used for green belt development.

1.6.8 Management of Waste Disposal sites within Well site

The project proponent will dispose the drill cuttings, drill mud and wastewater generated during the proposed project operations into the lined pits of various sizes and undertaking plantation within the well site particularly on the reclaimed pits.

1.6.9 Management of Production Phase

During production of oil & gas will be collected through flow lines and processed in the Group Gathering Stations (GGS) in the ML areas. Once the drilling proves commercial viability, the well will be connected to GGS facilities through a flow line are regular inspection and monitoring will takes place to check equipment working capability and quality standards including compliance to HSE requirements.

1.7 Environmental Monitoring Program

A detailed pre-drilling, development and production and post-drilling phase monitoring in respect of air, water, soil, land use, occupational noise, etc. to assess the changes has been evolved covering various phases of project advancement. A network of sampling locations around the operational facilities will be established. The monitoring shall include compliances to legal and statutory controls imposed on the operation as well as other corporate commitment to responsible environment management. Systems for monitoring resources inputs (energy, chemical use, water, raw materials), equipment and plant performance and waste generations will also be set up. A detailed waste management plan with monitoring programme will be in place during various phases of activity.

1.8 Risk Assessment and Disaster Management Plan

The hazard potential of oil and gas and estimation of consequences in case of their accidental release during drilling has been identified and risk assessment has been carried out to quantify the extent of damage and suggest recommendations for safety improvement for the proposed facilities. Risk mitigation measures based on MCA analysis and engineering judgments are incorporated in order to improve overall system safety and mitigate the effects of major accidents.

An effective Disaster Management Plan (DMP) to mitigate the risks involved has been prepared. This plan defines the responsibilities and resources available to respond to the different types of emergencies envisaged. Training exercises will
be held to ensure that all personnel are familiar with their responsibilities and that communication links are functioning effectively.

1.9 Project Benefits

The proposed program will establish hydrocarbons in the block. The development of the oil field will result in considerable growth of service sector and will also generate new industrial and business opportunities in the area. Small and medium scale industries may be developed as consequence.

The major benefits of the project include reduction of the oil import bill of the nation as well as reduction of the imbalance in oil production and consumption. The commercial development will also lead to investment in Assam, bringing oil and gas revenues both to the State and to the Central Government. The presence of ONGC in the region will substantially improves the socio-economic conditions of the region.

In operation phase ONGC requires significant work force of non-technical and technical persons. Migration of persons with better education and professional experience will result in increase of population and literacy in the surrounding villages.

1.10 Administrative Aspects

The basis of the operational philosophy is that the activities proposed in oil and gas processing shall be operated in complete compliance with all applicable Laws, Regulations, Standards and Permits, the Production Sharing Contract (PSC), ONGC corporate policies, procedures, specifications, rules, standards and guidelines. In order to achieve this, the proposed drilling sites will be maintained by technically qualified and experienced people. Detailed procedures and plans will be developed for each activity prior to operations start up. All persons on board the drilling rig will be an experienced crew with valid qualifications.

ONGC has a well defined Organization for Environment Management System. ONGC is committed to extend the EMS to its proposed facilities in Assam. The Director (Operations) of the project oversees the total environmental activity on a day-to-day basis. All individual departments are accountable for the environment in and around them and individual departments take prompt action in dealing with environmental issues. The HSE dept is the nodal agency to coordinate and provide necessary services on environmental issues during construction and operation of the project.

1.11 Conclusions

The proposed project has certain level of marginal impacts on the local environment. However, the proposed project has significant beneficial impact/effects in terms of providing the employment opportunities and various CSR practices to be followed by ONGC. Growth and development, in harmony with the environment, has always been the approach of ONGC.

The conclusions of EIA are:
• The proposed project meets the compliance requirements of various environmental regulations;
• Adoption of environmental friendly Best Management Practices results in minimising the impacts on environment;
• Community impacts of the project will be beneficial, as the project will generate significant economic benefits for the region;
• The post drilling, commercial developmental activities of ONGC can reduce the import burdens of crude oil to the nation; and
• With the effective implementation of the Environment Management Plan (EMP) during the planning, design, construction and operation phases, the development and production project can proceed without significant negative impact on the environment.